
34 The Delphi Magazine Issue 39

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

The Leader Of The Pack
Priority queues and heapsort

I was reviewing last month’s arti-
cle in preparation to writing this

one, when I was suddenly struck by
something. You know the bad
photocopies of bad epigrams that
some people put up on their
cubicle walls (the ones that Scott
Adams lampoons in Dilbert)? Well, I
was suddenly struck by one I
remember from way back when. It
was ‘Think Ahead’, but this had a
little typographic flair: the ‘Think’
and ‘Ah’ were in large type, but the
remainder, ‘ead’, had to be
squeezed into the remaining space
in a very condensed type to fit. I
suddenly felt the same way. To
continue with my discussion of
graphs and graph algorithms, I
needed to use a priority queue and
I think, to be fair, it would be best
for all of us if I devoted some time
to this interesting data structure.

So, dear reader, please excuse
the slight digression from my
graph series. This month we’ll talk
about the priority queue, which, if
nothing else comes of our talks on
graphs, you’ll be able to use as a
data structure in your code.

So, then, a priority queue.
Something for queuing priorities?

First Cut Is The Deepest
Let’s review quickly what an ordi-
nary queue is. A queue is a data
structure that has two main opera-
tions: add an item to the queue,
and retrieve the oldest item from
the queue. Generally the queue
does not allow you to fiddle with
other items in the queue: they’re
deemed to be inaccessible until
they’re at the front of the queue
(that is, the oldest), nor is it allow-
able to insert an item in the queue
at some random place, or at the
front (ie, to make it the oldest). The
queue is known as a FIFO structure:
First In, First Out (compared to a
stack, which is a LIFO structure:
Last In, First Out).

In implementing a queue, we
don’t bother to give each item the
date and time of its arrival in the

queue just so that we can find the
oldest: the queue keeps the items
in order of their arrival. Just like
the checkout at a supermarket, in
fact. The customers wait patiently
(sometimes) in line, until their turn
with the checkout person arrives.
They tag on to the end of the queue
and are processed in order from
the front. Queue jumpers are not
allowed (at least not in my
supermarket they’re not).

All fine and dandy, and the queue
is an important data structure in its
own right. However, it has a limita-
tion in that items are processed in
the order of their arrival. Suppose
we want to process items in some
other order: in other words, a
queue that still has the ‘add an
item’ operation, but whose second
operation is not ‘retrieve the old-
est’, but ‘retrieve the largest (or
smallest)’. We want to replace the
simplistic age ordering with
another ordering criterion.

The Legend Of Xanadu
This new data structure is a prior-
ity queue. It has two main opera-
tions: add an item (as before), and
retrieve the item with the largest
priority (we assume that each item
has an associated priority). What
do I mean by priority in this con-
text? Well, it can be anything. Clas-
sically, it’s usually a numeric value
that denotes the item’s priority in
some process. I’m thinking here of
print queues in operating systems
(or job queues, or threads in a
multithreaded environment). Each
print job is assigned a priority, a
value that indicates how important
that particular print job is. High
priority print jobs would need to
be processed before low priority
print jobs. The operating system
finishes off a particular print job,
and then goes to the print queue
and from it retrieves the print job
with the highest priority. As work
is done in the operating system,
other print jobs get added to the
print queue with various priorities.

Going back to the supermarket
analogy, the deli counter in my
supermarket operates a number-
ing scheme. You grab a number on
a piece of paper from a dispenser
and then wait around in some
amorphous mass of customers
until your number is called and
you can go up and order your
potato salad or whatever. This is
almost the same as the traditional
queue where the numbers repre-
sent how long you’ve been waiting,
but note that we, the customers,
don’t have to wait in a nice orderly
line like a standard queue. Because
we have a priority (a number on a
piece of paper) we can shuffle
around just as we like.

Do note that the value we are
using as ‘priority’ doesn’t need to
be a classic priority number in this
vein. It can be any value, just so
long as the queue is able to deter-
mine the item with the largest
value. In other words, the values
have to have some meaningful
ordering. An example: the priority
could be a name, and the ordering
the standard alphabetic order. So
the retrieval operation of getting
the item with the largest priority
would instead become getting the
item earliest in alphabetic
sequence (ie, A... before B... etc).
Imagine the uproar at my deli
counter if that was the definition of
‘priority’! Certainly the Young
family would never shop there.
Still, when programming, the point
is that we can select the retrieval
ordering that suits our needs.

The Carnival Is Over
Enough chatter, let’s consider how
to code a priority queue. The

November 1998 The Delphi Magazine 35

queue must be able to firstly store
an arbitrary number of items, sec-
ondly add an item with associated
priority to the queue, and thirdly
identify and retrieve the item with
the largest priority.

Traditionally, the first attribute
(storing an arbitrary number of
items) has been implemented by a
linked list. This structure gives us
an extensible container without
too much overhead or too many
efficiency constraints. Let’s be dif-
ferent, however, and use a some-
what under-appreciated Delphi
data structure: the TList. It can be
grown, accessing items is fast, but
efficiency suffers a little when
deleting an item from the middle of
the list. Since we won’t be using
this first design anyway (we’re just
illustrating the concept of a priority
queue at the moment, I’ll be reveal-
ing a better algorithm shortly), this
last problem won’t cause us too
much heartache. So we’ll use an
internal TList object to store the
items we get.

The next attribute (add an item
to the queue) is easy with TList:
just call the Tlist’s Add method.
We’ll take the view that the items
we add to the priority queue will be
objects of some description, with
their priority as a property of the
object. If we want the priority to be
separate from the objects (or
pointers, or integers, or whatever)
we add to the priority queue then

the details just become a little
more involved (create a super-
object that contains the original
object and priority and add that to
the TList instead) and will just
obscure what we’re trying to show.

The third attribute (finding the
highest priority and returning the
associated object, removing it
from the priority queue in the pro-
cess) is a teensy bit more involved
but still quite simple. Essentially
we iterate through the items in the
TList and for each item we see
whether its priority is larger than
the largest priority we’ve found so
far. If it is, we take note of the index
of the item in the TList with this
newer largest priority, and move
on to the next item. After we’ve
checked all of the items in the
TList, we know which is the largest
(we took note of its index) and so
we just remove it from the TList
and pass it back.

The code in Listing 1 shows this
simple priority queue. It uses a
comparison event that you set up
in order to determine whether an
item’s priority is greater than
another’s. The priority queue
therefore doesn’t need to know
how to compare priorities (and
hence whether they’re numbers or
strings or something else): it just
calls the comparison event, pass-
ing the two items whose priorities
it needs to compare. Note also that
the queue doesn’t need to know

what the items are, it just stores
them, so we just declare the queue
to use pointer variables and
typecast as necessary.

Pretty good, I’d say. From a dis-
cussion of a concept to a working
data structure in a couple of pages.
Before we get too carried away,
let’s think about the efficiency of
our design. Firstly, adding an item
will get done in constant time
(ignoring time lost due to growing
the TList). In other words, adding
an item to an empty queue or to a
queue containing thousands of
items will take roughly the same
amount of time. In computer sci-
ence speak, we say that the algo-
rithm is O(1) (or big-Oh of 1), that
is, no matter how many items there
are, we consider the time taken to
be constant.

Now let’s look at the opposite
operation: removing an item. Here,
we need to read through all the
items in the TList to find the one
with the largest priority. The time
taken for this operation with a
queue with one item would obvi-
ously be less than the time for a
queue with thousands of items.
The time taken, in fact, is propor-
tional to the number of items or, in
computer science speak, O(N).
When we remove an item, we
replace it with the last item in the
TList, so that we don’t have to do
any reorganization of the TList.

So we have a structure that
implements a priority queue in
which adding an item is an O(1)

type
TaaPriorityQueueA = class
{ Priority queue that’s fast at insertion slow at retrieval}
private
pqCompare : TaaItemPriorityCompare;
pqList : TList;

protected
function pqGetCount : integer;

public
{ Create priority queue}
constructor Create(aCompareFn:
TaaItemPriorityCompare);

{ Dispose: items remaining are NOT freed}
destructor Destroy; override;
{ Add an item}
procedure Add(aItem : pointer);
{ Remove and return item with largest priority}
function Remove : pointer;

end;
constructor TaaPriorityQueueA.Create(aCompareFn :
TaaItemPriorityCompare);

begin
inherited Create;
pqCompare := aCompareFn;
pqList := TList.Create;

end;
destructor TaaPriorityQueueA.Destroy;
begin
pqList.Free;
inherited Destroy;

end;
procedure TaaPriorityQueueA.Add(aItem : pointer);
begin
pqList.Add(aItem);

end;
function TaaPriorityQueueA.Remove : pointer;
var
Inx : integer;
PQCount : integer;
MaxInx : integer;
MaxItem : pointer;

begin
PQCount := pqList.Count;
if (PQCount = 0) then
Result := nil

else if (PQCount = 1) then begin
Result := pqList[0];
pqList.Clear;

end else begin
MaxItem := pqList[0];
MaxInx := 0;
for Inx := 1 to pred(PQCount) do
if (pqCompare(pqList[Inx], MaxItem) > 0) then begin
MaxItem := pqList[Inx];
MaxInx := Inx;

end;
Result := MaxItem;
pqList.Delete(MaxInx);

end;
end;

➤ Listing 1: Simple priority queue using TList to store items.

36 The Delphi Magazine Issue 39

operation and removing it is an
O(N) operation. For small numbers
of items this structure is perfectly
acceptable and usable.

I Like It
But, and this is a fairly big but, we
can easily do better. I’m sure you
can think of one efficiency
improvement straight away: main-
tain the TList in priority order,
keep it sorted. If you think about it,
this means we shift the work of the
queue from item removal to item
insertion. When we add an item we
find its correct place inside the
TList, which is after all the items
with lower priority and before all
those with higher priority. If we do
this extra work during the add
phase, the TList will have all the
items in priority order and hence,
when we remove an item, all we
need to do is to delete the last item.
Pretty simple, huh? In fact, removal
becomes an O(1) operation (we
know exactly where the item with
the largest priority is, it’s at the
end, so removing it doesn’t depend
on how many items there are).

Calculating the time required for
insertion in this sorted TList is a
little more involved. The simplest
way to think of how it’s done is to
think of it as an insertion sort (see
Algorithms Alfresco for September
1998): grow the TList by one item,
and then move items along by one
into the spare hole (like beads on a
thread) starting from the end of the
TList. You stop when you reach an
item that has a priority less than
the one you are trying to insert.
You then have a ‘hole’ in the TList
where you can put the new item. If
you think about this for a moment,
on average you’d move n/2 items

for n items in the TList. Hence
insertion is an O(N) operation
(the time taken is again pro-
portional to the number of
items in the queue), although
with this improvement the time
taken would be somewhat less
than the previous implementation.
Listing 2 shows how these two
operations are coded with this
kind of internal structure.

We’ve now moved from fast
insertion and slow deletion to slow
insertion and fast deletion. Can we
do better? Yes, we can, by aban-
doning the TList and moving to
another data structure entirely:
the binary search tree. Here, inser-
tions and deletions are both O(log
N) operations, in other words the
time taken for both item insertion
and deletion are proportional to
the logarithm of the number of
items in the structure. I won’t go
into this structure now because
the binary tree suffers from one big
problem: you need to worry about
balancing it to maintain its inser-
tion and deletion time properties.
There are a few balancing algo-
rithms out there (eg red-black, AVL
and splaying) and they deserve
articles of their own. Of course I
needn’t worry too much about
them here because I have a better
structure up my sleeve anyway.

With A Little
Help From My Friends
In a binary search tree, the nodes
are arranged so that for every
node, it is greater than its left child
and less than its right child. This is
known as strict ordering. There is a

procedure TaaPriorityQueueB.Add(aItem : pointer);
var Inx : integer;
begin
pqList.Count := pqList.Count + 1; {increment number of items in the list}
Inx := pqList.Count - 2; {find where to put our new item}
while (Inx >= 0) and (pqCompare(pqList[Inx], aItem) > 0) do begin
pqList[Inx+1] := pqList[Inx];
dec(Inx);

end;
pqList[Inx+1] := aItem; {put it there}

end;
function TaaPriorityQueueB.Remove : pointer;
begin
Result := pqList.Last;
pqList.Count := pqList.Count - 1;

end;

➤ Listing 2: Priority queue Add and Remove using a sorted TList.

lesser ordering called the heap
property that can be applied to a
binary tree which just states that
any node in the tree must be
greater than both its children.
Note that the heap property does
not state that the left child is less
than the right child (for then the
heap property becomes a strict
ordering again), but just that the
parent is greater than both its chil-
dren. There’s one more thing to
the heap property: the tree to
which it applies must be complete.
A binary tree is called complete
when all its levels are full, except
for possibly the last. A complete
tree is as balanced as it can be.
Figure 1 shows an example.

So how does this help us in our
quest for the perfect priority
queue structure? Well, it turns out
that the insertion and deletion
operations on a binary tree with
the heap property are O(logN), but
they are significantly faster than
the same operations in a binary
search tree. (By the way, let’s
shorten ‘binary tree with the heap
property’ into ‘heap’, it’ll save on
ink. Don’t confuse this heap with
Delphi’s memory heap though.)
This is one instance where the
big-O notation falls short, it does-
n’t give any quantitative feel for
which of two operations with the
same big-O value is actually faster.

Anyway, how do we insert and
remove from a heap? To do an
insertion we perform a bubble-up
operation, with removal we per-
form a trickle-down operation.
Let’s see what these cute terms
actually mean.

Insertion first. To insert an item
into a heap, we add it to the end of
the heap (in the only place that
continues to maintain the com-
pleteness attribute, in Figure 1 that
would be the right child of the 4
node). At this point the heap prop-
erty of the tree may be violated
(the new node may be larger than

➤ Figure 1: A complete binary tree.

November 1998 The Delphi Magazine 37

its parent), so we need to patch the
tree up. If this new child node is
greater than its parent, swap it
with the parent. Similarly our new
node may also be greater than its
new parent, so it needs to be
swapped again. In this manner we
continue working our way up the
heap until we reach a point where
our new node is no longer greater
than its parent, or we’ve reached
the root of the tree. We’ve now
ensured that all nodes are greater
than both their children again and
the heap property has been
restored. As you can see, we bub-
ble-up the new node until it reaches
its correct place (the root or just
under a node that is larger than it).

If you think about it, the heap
property ensures that the largest
item is at the root (if it wasn’t, it
would have a parent smaller than
itself, hence the heap property has
been violated). We can therefore
move onto removal: the item we
want is at the root. The theory
would seem to indicate that we
delete the root node, passing the
item back as a result, but this

would leave us with two separate
subtrees: an utter violation of the
completeness attribute of our
heap. Instead, we replace the root
node with the last node of the heap
and thereby ensure that the tree
remains complete. But, again,
we’ve probably violated the heap
property: the new root may be
smaller than one or both of its chil-
dren. So we find the larger of the
node’s two children and swap it
over. Again, this new position may
violate the heap property, so we
verify whether it’s again smaller
than one (or both) of its children,
and repeat the process. Even-
tually, we’ll find that the node has
sunk or trickled down to a level
where it is greater than both its
children, or it’s now a leaf with no
children. Either way we’ve again
restored the heap property.

Pretty simple, huh? Well, unfor-
tunately using a tree like this is
pretty wasteful of space. For every
node we have to maintain three
pointers: one for each child, so that
we can trickle down the tree, and
one for the parent, so that we can

bubble up. Every time we swap
nodes around we run the risk of
having to update umpteen differ-
ent pointers for numerous nodes.
So, the usual trick is to leave the
nodes where they are and just
swap the items around inside the
nodes instead.

Poetry In Motion
There is, however, a simpler way.
A complete binary tree can be
easily represented by an array.
Look at Figure 1 again. Notice how
the node numbers are sequential
and have been allocated to the
nodes from top to bottom, level by
level, and from left to right on each
level. This top/bottom, left/right
annotation provides a nice map-
ping from node to element number
in an array. There are no ‘holes’ in
the mapping: the fact that the heap
is a complete tree helps there. Now
have a look at the numbers of the
children for each node. The chil-
dren for node 0 are 1 and 2 respec-
tively. The children for node 3 are 7
and 8, for node 5 they are 11 and 12.
Notice any pattern? In fact the

38 The Delphi Magazine Issue 39

children for node n are nodes 2n+1
and 2n+2, and the parent for node n
is |(n-1)/2| (where the || operator
means take the integer part of the
bit in between the bars: in Delphi
we usually replace the / operator
with the div operator, and the
result is always an integer). Sud-
denly we have a simple way of
implementing a heap with an array
and are able to work out where the
children and parent of a node are in
the array. And furthermore, we can
use a Tlist again! Listing 3 shows
this new code for insert and
remove. Rather than describe
what’s going on, I leave you to
follow the description of bubble-up
and trickle-down and check the
code and comments yourself.

In the literature, nodes are usu-
ally counted from one instead. This
makes the arithmetic a little easier:
node n’s children are at 2n and
2n+1 and its parent is at |n/2|.
We’ll stick with our original formu-
lae though, since we’re using TList.

Having obtained a heap imple-
mentation of a priority queue, we
can observe that the heap can in
fact be used as a sorting algorithm:
add a bunch of items all in one go to
the heap and then pick them off
one by one in the correct order.

(Note that, as written, the items are
picked off in reverse order, largest
first, but with a quick change of the
compare method, we can get them
in ascending order instead. In fact,
the heap we have developed so far
is known as a max-heap, the largest
is picked off first, and one that
works in reverse order is known as
a min-heap, the smallest is picked
off first.) Sorting with heaps, or
more strictly with the heap algo-
rithm, is known as... heapsort. If
you remember from the September
1998 Algorithms Alfresco column,
heapsort was one of the sorts I
didn’t discuss, so let’s take the
opportunity to deal with it now and
introduce it a little more formally.

Walkin’ Back To Happiness
Let’s play around with the heap, at
least with regard to sorting. The
algorithm I’ve given so far is this:
assume we have a min-heap, add
all the items to it, and then retrieve
them one by one. If the items were
held in an array (or a TList) in the
first place, this algorithm would
mean that all the items would be
copied from one array to another,
and then copied back. Is there any
way to order the items into a heap
in situ without having to have a sep-
arate work array to hold them? In
other words, can we make an exist-
ing array into a heap by ‘applying’ a
heap structure to it? Amazingly

enough, we can, and furthermore
we can do so in O(N) time, rather
than the O(NlogN) time required
by adding the items one by one to a
separate heap. We use an algo-
rithm called Floyd’s algorithm.

We start out with the parent of
the rightmost child node (ie, the
node furthest to the right on the
last level of the heap). Apply the
trickle-down algorithm to this
parent. Select the node to the left
of the parent on the same level (it’ll
be a parent as well, of course).
Apply the trickle-down algorithm
again. Keep on moving left, apply-
ing the trickle-down algorithm,
until you run out of nodes. Move
up a level, to the rightmost node.
Continue the same process from
right to left, going up level by level,
until you reach the root node. At
this point the array has been
ordered into a heap and we could
start peeling off items one by one
in the usual manner. Listing 4
extends our heap class to enable
another TList created externally
to replace the one auto-created by
the class, and in doing so Floyd’s
algorithm is applied.

Having ordered an array into a
heap, what then? Peeling off the
items one by one still means we
need somewhere to put them in
sorted order, presumably some
auxiliary array. Or does it? Think
about it for a moment. If we peel off

procedure TaaPriorityQueue.Add(aItem : pointer);
begin
{add extra space at the end of the queue}
pqList.Count := pqList.Count + 1;
{now bubble it up as far as it will go}
pqBubbleUp(pred(pqList.Count), aItem);

end;
procedure TaaPriorityQueue.pqBubbleUp(
aFromInx : integer; aItem : pointer);

var ParentInx : integer;
begin
{ while item under consideration is larger than its
parent,swap it with its parent and continue from its
new position. NB: the parent for child at index N is at
(N-1) div 2 }

ParentInx := (aFromInx - 1) div 2;
{while item has a parent and it's greater than parent...}
while (aFromInx > 0) and
(pqCompare(aItem, pqList[ParentInx]) > 0) do begin
{move our parent down the tree}
pqList[aFromInx] := pqList[ParentInx];
aFromInx := ParentInx;
ParentInx := (aFromInx - 1) div 2;

end;
{store our item in the correct place}
pqList[aFromInx] := aItem;

end;
procedure TaaPriorityQueue.pqTrickleDown(aFromInx :
integer; aItem : pointer);

var
ChildInx : integer;
ListCount : integer;

begin
{ while item under consideration is smaller than one of
its children, swap it with larger child and continue

from its new position. NB: children for parent at index
N are at (2N+1) and 2N+2 }

ListCount := pqList.Count;
{calculate left child index}
ChildInx := succ(aFromInx * 2);
{while there is at least a left child...}
while (ChildInx < ListCount) do begin
{ if there is a right child, calculate the index of the
larger child}

if (succ(ChildInx) < ListCount) and
(pqCompare(pqList[ChildInx], pqList[succ(ChildInx)])
< 0) then inc(ChildInx);

{if item is >= larger child, we're done }
if (pqCompare(aItem, pqList[ChildInx]) >= 0) then
Break;

{ otherwise move the larger child up the tree, and move
our item down the tree and repeat}

pqList[aFromInx] := pqList[ChildInx];
aFromInx := ChildInx;
ChildInx := succ(aFromInx * 2);

end;
{store our item in the correct place}
pqList[aFromInx] := aItem;

end;
function TaaPriorityQueue.Remove : pointer;
begin
Result := pqList[0]; {return the item at the root}
{ replace the root with the child at the lowest, rightmost
position, and shrink the list}

pqList[0] := pqList.Last;
pqList.Count := pqList.Count - 1;
{now trickle down the root item as far as it will go}
if (pqList.Count > 0) then
pqTrickleDown(0, pqList[0]);

end;

➤ Listing 3: Priority queue Insert
and Remove using the heap
algorithm.

November 1998 The Delphi Magazine 39

the largest item, the heap size
reduces by one, leaving space at
the end for the item we just obtained.
In fact, the algorithm to remove an
item from a heap requires the
lowest, rightmost node to be
copied to the root before being
trickled down, so all we need to do
is to swap the root with the lowest,
rightmost node, reduce the count
of items in the heap, and then apply
the trickle-down algorithm. Con-
tinue doing this until we run out of
items in the heap. What’s left is the
items sorted in the original array.

And that is heapsort. Heapsort is
important for a couple of reasons.
It’s an O(NlogN) algorithm, so it’s
fast. Heapsort is also just as fast in
both the general case and the
worst case. Compare this with
quicksort: in the general case
quicksort is faster, but quicksort
can easily be tripped up by an
already sorted set of items, causing
it to crawl: it becomes an O(N2)
algorithm, unless we apply some
algorithm improvements. In this
worst case, heapsort is better.

Listing 5 shows the heapsort
routine. There’s something I didn’t
point out before which I should. If
you are using a max-heap, you

retrieve the items in reverse order,
from largest to smallest. However,
if you are using a max-heap to do a
heapsort, you get the items sorted
in ascending order, not in reverse
order. With a min-heap you’d peel
items off in ascending order, but
you’d heapsort in descending
order. Something to be aware of.

Reach Out I’ll Be There
Having been briefly diverted onto
heapsort, we should return to pri-
ority queues and finish off this arti-
cle. Before we made our detour, we
had written a priority queue based
on a max-heap. Our original specifi-
cation for the priority queue had
defined two basic operations:
adding an item to the queue, and
removing the one with the largest
priority. We’ve seen that the heap
is very efficient at both these oper-
ations. Are there any more opera-
tions that make sense for the

priority queue? Here’s a good one:
changing the priority of an item.

Right from the start, this is diffi-
cult. Consider it for a moment. The
priority queue class would be
given an item that’s already in the
queue somewhere (one that pre-
sumably has just had its priority
changed), and the queue must
restore the heap property. How on
earth do we find the item in the
queue? This is one place where the
‘loose’ sorting in the queue works
against us. In a binary search tree
we could use a binary search with
the old priority and find the item
quite easily. But in a heap? We
could obviously use a sequential
search (start at the beginning of
the array and go through it item by
item looking for the one we want)
but that’s pretty slow.

OK, leave the difficult bit for a
moment and assume we have a
way of efficiently finding the item

procedure AAHeapSort(var aItemArray : TList;
aLeft, aRight : integer; aLessThan : TaaLessFunction);

var
Inx : integer;
FromInx : integer;
ChildInx : integer;
ListCount: integer;
Item : pointer;

begin
{if there's nothing to do, do it}
ListCount := aRight - aLeft + 1;
if (ListCount <= 1) then
Exit;

{first, turn array into a heap; this is complicated by the
fact that all our indexes are offset by aLeft}
for Inx := ((ListCount - 2) div 2) downto 0 do begin
Item := aItemArray[Inx+aLeft];
FromInx := Inx;
ChildInx := succ(FromInx * 2);
{while there is at least a left child...}
while (ChildInx <= aRight-aLeft) do begin
{if there is a right child, calculate the index of
the larger child}
if (succ(ChildInx) <= aRight-aLeft) and

aLessThan(aItemArray[ChildInx+aLeft],
aItemArray[succ(ChildInx)+aLeft]) then
inc(ChildInx);

{if item is >= larger child, we're done}
if not aLessThan(Item,
aItemArray[ChildInx+aLeft]) then
Break;

{otherwise move the larger child up the tree, and move
our item down the tree and repeat}
aItemArray[FromInx+aLeft] :=
aItemArray[ChildInx+aLeft];

FromInx := ChildInx;
ChildInx := succ(FromInx * 2);

end;
{store our item in the correct place}
aItemArray[FromInx+aLeft] := Item;

end;

{if there are only two items, above will have sorted them}
if (ListCount = 2) then
Exit;

{now progressively pop off largest element and reduce heap
size by one, storing largest element in vacated space;
again this is complicated by the fact that all our
indexes are offset by aLeft}
while (ListCount > 1) do begin
{save last item (we'll pretend it's at the root),
replace it with the root item (ie the largest)}
Item := aItemArray[aRight];
aItemArray[aRight] := aItemArray[aLeft];
{reduce the size of the heap}
dec(ListCount);
dec(aRight);
{trickle down from the root}
FromInx := 0;
ChildInx := succ(FromInx * 2);
{while there is at least a left child...}
while (ChildInx <= aRight-aLeft) do begin
{if there is a right child, calculate the index of
the larger child}
if (succ(ChildInx) <= aRight-aLeft) and
aLessThan(aItemArray[ChildInx+aLeft],
aItemArray[succ(ChildInx)+aLeft]) then
inc(ChildInx);

{if our item is >= the larger child, we're done}
if not aLessThan(Item,
aItemArray[ChildInx+aLeft]) then
Break;

{otherwise move the larger child up the tree, and move
our item down the tree and repeat}
aItemArray[FromInx+aLeft] :=
aItemArray[ChildInx+aLeft];

FromInx := ChildInx;
ChildInx := succ(FromInx * 2);

end;
{store our item in the correct place}
aItemArray[FromInx+aLeft] := Item;

end;
end;

procedure TaaPriorityQueue.pqMakeIntoHeap;
var
Inx : integer;

begin
{ starting from lowest, rightmost parent, trickle down and then continue with
rest of parents from right to left, bottom to top. Rightmost parent is
parent of last item. This is ((count-1)-1) div 2 }

for Inx := ((pqList.Count - 2) div 2) downto 0 do
pqTrickleDown(Inx, pqList[Inx]);

end;

➤ Listing 4: Floyd's algorithm.

➤ Listing 5: Heapsort.

40 The Delphi Magazine Issue 39

in the queue. Once we do have its
position, we look at its parent. Is
the item’s new priority greater
than its parent’s? If so, we bubble
the item up the heap. If not, we look
at its children. If it’s smaller than
one or both of its children we
trickle it down the heap. That’s the
easy part done! And it’s efficient to
boot: because it uses the bub-
ble-up and trickle-down routines,
it’s an O(logN) operation. So, drag-
ging our feet as we do so, we have
to consider the first bit: how do we
efficiently find the item in the
heap?

Obviously we have to do some-
thing else, store some extra infor-
mation somewhere, have some
kind of routine or data structure to
help us. What we do is create
what’s called an indirect heap.
Instead of arranging the actual
items in a heap, we arrange ‘point-
ers’ to those items instead, in other
words, provide a level of indirec-
tion, and then store the items
somewhere else. All well and good,
but haven’t we just removed the
problem somewhere else? We still

have to find a given item after all.
We could store the items in a hash
table (see my articles in The Delphi
Magazine for February and March
1998) or a sorted list of some kind,
but both these would require some
kind of key to go with the item.
However, using a hash table would
be a valid technique under these
circumstances.

Another standard way is to keep
the items externally to the priority
queue in an array. The queue is
told where the array is (and hence
can get at the items) and the meth-
ods for the queue then use the
number of each item in that array,
instead of the item itself. The prior-
ity queue can then maintain an
array of ‘pointers’ into the heap,
indexed by this item number. I’ll
admit that this algorithm doesn’t
sit well with me since the priority
queue has absolutely no control
over the external list being
modified, sorted or whatever.

The algorithm we’ll show uses
handles to items. When you add an
item to the priority queue, you’re
passing control of that item to the

queue. In return, you’ll be given a
handle by which you will hence-
forth refer to that item. When you
remove the item with the largest
priority from the queue, its handle
will be destroyed. You can use the
handle to delete an item from the
queue (wherever it may appear in
the queue) and the handle will be
deleted as well. You can also use
the handle to replace any item in
the queue (if you want to change
an item’s priority, change the pri-
ority inside the item and use the
item’s handle to replace the item,
in situ as it were). If your items are
records or objects, you can store
the handle to that item inside the
item itself alongside its priority
and that way you’ll be able to keep
track of the items and their han-
dles (of course, you would be
responsible for maintaining the
handle value inside the item: the
queue knows nothing about the
internal structure of an item,
remember). And the type of a
handle? It can be anything really,
but traditionally it’s usually a (dis-
guised) typeless pointer to make

November 1998 The Delphi Magazine 41

sure you don’t do some arithmetic with it. So that’s
what we’ll do as well.

If you look at the code on this month’s disk, you’ll see
that internally the queue maintains a linked list of
nodes. Each node contains an item and an index into
the heap, and a handle used by the queue’s user is actu-
ally a pointer to one of these nodes. The heap algo-
rithm now manages a heap of handles and it has to be
careful to dereference a handle whenever the item is
needed for comparison, or the heap index needs to be
updated.

Out Of Time
With this final extended priority queue class, we come
to the end of this month’s column. We’ve come a long
way: from a simplistic priority queue that allows addi-
tion of items and their removal in priority order (with
one or the other operation inefficiently coded), to a
sophisticated version that performs these two opera-
tions efficiently together with two extra operations:
changing or deleting any item in the priority queue.
Again, these use efficient algorithms. We’ll use the
latter priority queue in our next foray into graphs.

Julian Bucknall is thoroughly prioritized now he’s
married, but still enjoys those thoroughly terrific top
ten tunes from his youth. The code that accompanies
this article is freeware and can be used as-is in your
own applications. © Julian M Bucknall, 1998

	First Cut Is The Deepest
	The Legend Of Xanadu
	The Carnival Is Over
	I Like It
	With A Little Help From My Friends
	Poetry In Motion
	Walkin’ Back To Happiness
	Reach Out I’ll Be There
	Out Of Time

